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Abstract—During the development of an alpine ski,
several prototypes are built until the desired ski perfor-
mance is achieved by the analogous stiffness distribu-
tion over the ski length. So far, there is no technology
to quantify the stiffness behaviour of an alpine ski,
only qualitative methods. An alpine ski consists of
several layers with different E-modules, cross sections,
and lengths. As a result, the bending and torsional
stiffness changes continuously along the length of the
ski. However, the bending line and the torsion angle
changing over the latitude can be measured under a
defined load. With these three quantities, the bending
and torsional stiffness distribution can be calculated
over the length of an alpine ski. A test bench is
developed to measure the desired quantities under
laboratory conditions. A validation of the measurement
for bending and torsional stiffness is then performed.
The results can be used for comparison with previously
developed skis and in future to allow conclusions to
be drawn about the specific behaviour of the materials
which are used. Also, for quality management, if the
stiffness distribution is known, every ski of the same
series should have the same stiffness distribution.

I. Introduction

An alpine ski can be subjected into two different load
condition during driving. The first is bending when the
ski is going straight over a small hill. The other is torsion
when the ski enters a turn and is loaded on the edge. An
alpine ski has a complex shape and in follow constantly
changes its cross-section over its length. The material
distribution also changes constantly along its length. As a
result, the stiffness is constantly changing over its length.
The research question is whether it is possible to measure
the stiffness distribution of a ski in both bending and
torsional states as a function of twist as well as the bending
line under load. Two previous master’s theses have already
been carried out. The first approach was to measure the
distance between a reference position and the current
position of the ski under load. Then, two derivations must
be performed to obtain the curvature and solve the inverse
problem of the differential equation of the bending line.
The same procedure is performed for the torsional load
condition. For each derivative performed, the uncertainty
increases significantly [1]. In the second thesis, the same
mechanical measurement approach is used, but the mea-
surement points are interpolated along the length. An
optimization algorithm is developed to interpolate the
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measurement along the length of the ski to minimize the
error. In addition, a regulation is implemented to avoid
oscillation of the optimization algorithm, which leads to
an enormous computational effort. However, an acceptable
result was obtained for the bending stiffness [2]. The new
approach is to measure the tangential angular change of
the bending line as the torsional twist along the length of
the ski under load. As a result, only one derivative needs
to be performed. Furthermore, a direct method for solving
the inverse problem of the differential equation of torsion
and bending can be performed. The measurement and val-
idation of bending stiffness is already sufficiently defined
via the Bernoulli Beam theory [2]. Torsional stiffness has
the problem that an ideal symmetrical body is assumed.
However, each ski has a different preload in the middle,
which leads to a shifted rotation of the body axis to the
centre of gravity axis [4]. First, the theoretical background
is explained. Then the procedure for the measurement is
explained. In the next step, the verification is performed.
Finally, the results are discussed.

II. Method
In section II-A the mathematical foundation for the

evaluation is given. Also the evaluation of the axis shift
at torsion is considered. In addition, the method for
evaluating the measurement results via the differential
equations is described. In section II-B, the mechanical
part and procedure of the measurement is explained. Next,
in section II-C the steps for preparing the raw data are
described. Finally, the methods for verifying the accuracy
are explained.

A. Math
For the evaluation of the bending stiffness, the Euler-

Bernulli Theory is used. According to [2], the assumption
of a shear-rigid bending is sufficient. Equation 1 shows the
differential equation of the bending line. The curvature
can be expressed as ∂2w

∂x2 = w,xx(x) and the multiplication
EI(x) = E(x)I(x) which embodies the bending stiffness.
The mechanical model can be seen in figure 1, from
which the boundary conditions can be derived [3]. Already
the first derivative of w,x(x) by ϕ(x) is given by the
measurement procedure.

ϕ,x(x) = −
My(x)
EI(x) (1)

Then the moment distribution can be described in the
equation 2 as follows.



My(x) =
{
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To determine the bending stiffness, the differential equa-
tion must be used as in equation 3.

EI(x) = −
My(x)
ϕ,x(x) (3)

The same analogy can be applied to torsion. However,
by the simplified assumption of [4] only shear stresses
due to the shear modulus G(x) are considered. Due to
the axial displacement depending on the pretension of a
ski, it is expressed in [5] that small displacements have
no influence on the torsion measurement. The differential
equation of torsion can be expressed by the equation 4.
The first derivative of the torsional twist can be expressed
as ∂θ

∂x = θ,x(x) with torsional stiffness GI(x) = G(x)I(x).

θ,x(x) = Mt(x)
GI(x) (4)

To determine the torsional stiffness, the differential
equation can be substituted into the equation 5.

GI(x) = Mt(x)
θ,x(x) (5)

Since the applied force for both bending and torsion is
known at all times via a load cell in the test bench and
the angular change ϕ and θ can be measured, the stiffness
can be determined directly via this analogy.
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Fig. 1. Mechanical model of for bending and torsion with correspond-
ing moment distribution

B. Procedure
In the figure 2 can be seen the overall structure of

the test bench. The test bench can measure the bending
line and the torsion twist along the ski in two separate
measuring passes via the Lifting device and a Flexible
Clamp.

For the bending measurement, the two clamps at the
tips of the ski stay in neutral position. The Lifting device
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Fig. 2. Overall view of the test bench

in the middle apply a force to bend the ski. For the torsion
mode, the Lifting device stay in rest position. The Flexible
Clamp can be rotated up to 30◦ around the intersection of
the plane of symmetry and the base of the ski. The applied
torque can be measured via a load cell inside the Flexible
Clamp. The Measurement Unit in figure 3 has two rockers,
each with one degree of freedom about the X-axis and the
Y-axis. Two incremental encoders are used to measure the
change in angle while sliding over the ski base surface. The
sensitivity of the encoders are 0.01◦.
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Fig. 3. The seesaws with encoder for bending and torsional measure-
ment

A simplified three-point bending test can be adopted for
the bending. In the center at the Lifting device, the applied
force for the deflection is measured. All distances are
known. The Measurement Unit is mounted on a carriage
with free vertical guidance. The horizontal position change
is recorded via an incremental encoder. During torsion,
the flexible clamp is rotated by a maximum of 30◦. The
pivot point is located on the surface of the ski base. The
measurement is made in the same way as before, only this



time with the torsion seesaw. The force applied for the
twist is measured by a load cell inside the Flexible Clamp.
For data analysis, the measurement data is recorded by a
Teensy4.1 microcontroller. The recorded data is sent to a
local computer via a serial connection.

C. Evaluation procedure
For the application of the direct method to solve the

inverse problem of the differential equation in bending and
torsion, the received data must be prepared. First, all data
points are deleted where no change from the previous data
point occurs. Second, the data points are smoothed by
a weighted moving average called Loess algorithm [6]. In
the third step, the data points are interpolated by a cubic
spline. Within the continuous function values f(x) of the
cubic spline, a symmetric derivative is applied according
to the equation 6 demonstrated for bending.

ϕ,x = f(x+h)−f(x−h)
2h

(6)

The step size h is related to the sensitivity factor of
the position encoder in the X-direction, which is given by
0.01884mm.

D. Verification
To check the test setup, a sheet metal strip with a

known constant cross-section and modulus of elasticity is
clamped in the test bench and measured. Since the shape
of the curve is known, the difference can be determined
from the measurement data which is generated. This
procedure can be performed with several sheet metal
strips and different contours, which are shown in figure
4. To check accuracy, the measurement is then performed
N = 8 times with an alpine ski under constant load
conditions. At each X-position, the range of standard
deviation can be determined. Finally, the stiffness results
of two identical skis can be compared.
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Fig. 4. Four metal sheets with constant thickness and varying width

To check the measured contour for correctness, a
milled profile corresponding to the polynomial function
F (x) = 0.001x2 − 0.0000001x4 is also traversed with
the Measurement Unit. In this case, the measurement
is performed only through the bending rocker. The
measurement setup can be seen in Figure 5. The

measurement data must fit the first derivative of the
function F (x), which is f(x) = 0.002x ·0.0000004x3.
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Fig. 5. A special configuration of the measurement unit with only
one bending rocker for the polynomial function validation

III. Results
A. Accuracy

For accuracy, the measurement is performed N = 8
times. The standard deviation is determined from the raw
measurement data ϕ and θ. Figure 6 shows the standard
deviation of the bending at each X-position.

Fig. 6. Standard deviation of a bending measurement set with N = 8
measurements

The standard deviation can be given as σwF lex
=

0.0091◦ for bending. The mean standard deviation for
torsion can be seen in Figure 7.

The mean standard deviation for torsion can be given
as σwT ors

= 0.0124◦.
B. Polynomial function validation

For the polynomial function validation, a measurement
is performed. In the figure 8 the graph of the measurement
and the polynomial function f(x) are shown together.



Fig. 7. Standard deviation of a torsion measurement set with N = 8
measurements

Fig. 8. Fit of the measurement to the analytic solution of the
polynomial function

For the first derivative, the polynomial function is de-
rived analytically and the measurement data via a sym-
metric derivative. Figure 9 shows the derived data.

Fig. 9. First derivative of the measurement and the analytic solution

Significant discrepancies occur at the beginning and end
of the measurement data. The maximum difference can be
specified as 0.58◦. In the range of −70 ≤ x ≤ 70 the mean
difference can be specified as 0.24◦.

C. Constant Stiffness validation
For the primary stiffness validation, a metal sheet with a

known constant cross-section is measured in bending and
torsion mode. Figure 12 shows the evaluated, calculated
and averaged bending stiffness.

The averaged and calculated stiffness are relatively close
to each other with a difference of about 1.79%. The eval-
uated stiffness oscillates around the calculated stiffness,

Fig. 10. Evaluated, calculated and average stiffness of a speciem with
constant stiffness

but with larger deviations. Figure 11 shows the absolute
stiffness difference of the bending measurement.

Fig. 11. Difference of the bending stiffness to the calculated stiffness

The peak difference can be given as 26.77% and a mean
difference of 9.72% in the range of −400 ≤ x ≤ 400. Outside
this range, the drift of the curve is much larger. Figure 12
shows the evaluated torsional stiffness with the averaged
torsional stiffness.

Fig. 12. Evaluated and averaged torsional stiffness of a specimen
with constant stiffness

The same behaviour as before, the curve oscillates
around the averaged stiffness. At the end, the graph also
starts to develop larger drifts. Figure 13 shows the absolute
difference between averaged and evaluated stiffness.

A peak difference of 11.9% with a mean difference of
4.2% in a range of 230 ≤ x ≤ 1230 can be achieved.



Fig. 13. Difference of the evaluated stiffness to the averaged stiffness

D. Variable Stiffness distribution

The results of a plate of profile shape V ar12 are shown
in bending and torsion. The figure 14 shows the evaluated,
calculated and averaged bending stiffness.

Fig. 14. Evaluated, averaged and calculated bending stiffness of the
profile V ar12

A similar curve progression can be observed in the range
−200 ≤ x ≤ 200 from calculated to evaluated curve. The
peak difference in this range can be given as 10.3% with a
mean difference of 5.8%. At the ends, the evaluated curve
starts to drift away from the calculated stiffness again. In
figure 15 the same analogy with bending can be observed.

Fig. 15. Evaluated, averaged and calculated torsional stiffness of the
profile V ar12

The end also begins to drift, but with less intensity. The
peak difference can be given as 22.2% by a mean difference
of 6.65%.

E. Alpine Ski
Two identical skis are measured independently in bend-

ing and torsion. The stiffness distribution of the skis is not
known. Figure 16 shows the evaluated bending stiffness of
the two skis and the local mean value.

Fig. 16. Bending stiffness of two identical skis

Unlike the previous measurements, the stiffness distri-
bution and the ski tips are close together. In the middle, a
peak difference from the averaged stiffness can be seen at
12.5 % with a mean difference of 3.38%. Figure 17 shows
the torsional stiffness distribution.

Fig. 17. Torsion stiffness of two identical skis

As before, the stiffnesses at the tips are close to each
other. A peak difference of 24.99% with a mean difference
of 12.26% can be observed.

IV. CONCLUSIONS
It can be said that the approach with the sliding mea-

surement unit and the direct evaluation of the inverse
problem of the differential equation works. However, the
evaluation procedure cannot provide a sufficiently accu-
rate result to make a clear statement about the stiffness
distribution of an alpine ski. At least a peak difference of
less than 8% and a mean difference of about 4% must
be achieved continuously for several measurements [5]. A
possible approach could be an optimization algorithm used
in the evaluation to minimize the error between theoretical
stiffness and measured stiffness.
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